具有非单调发病率的随机SIS模型的持续性与灭绝性Persistence and Extinction of a Stochastic SIS Epidemic Model with Nonmonotone Incidence rate
锁娟;李星;杨娟;
摘要(Abstract):
讨论了一类具有非单调发病率的随机SIS模型.主要贡献在两个方面.在数学上,应用随机分析技术证明了R_0~s可以作为随机模型的阈值.当R_0~s<1时,随机模型存在一个无病的吸引集,即疾病会以概率1灭绝.当R_0~s>1时,疾病是随机持续生存的.在流行病学上,结果表明环境噪声可以抑制疾病的爆发,可以为疾病的预防和控制提供一些参考.
关键词(KeyWords): 流行病模型;;基本再生数;;阈值;;持续性;;灭绝性
基金项目(Foundation): 国家自然科学基金(11362018);; 宁夏自然科学基金(NZ16044);; 宁夏大学科学研究项目(ZR15026)
作者(Author): 锁娟;李星;杨娟;
Email:
参考文献(References):
- [1]Hethcote H W.The mathematics of infectious disease,SIAM Rev,2000,42:599-653.
- [2]Hethcote H W,et al.Some epidemiological models with nonlinear incidence[J].J Math Biol,1991,29(3):271-87.
- [3]Gray A,et al.A Stochastic Differential Equation SIS Epidemic Model[J].SIAM J Appl Math,2011,71(3):876-902.
- [4]Cai Y,et al.A stochastic SIRS epidemic model with infectious force under intervention strategies[J].J Differ Equations,2015,259:7463-7502.
- [5]Li G et al.Bifurcation analysis of an epidemic model with nonlinear incidence[J].Appl Math Comput,2009,214(2):411-423.
- [6]Xiao D,et al.Global analysis of an epidemic model with nonmonotone incidence rate[J].Math Biosci,2007,208(2):419-429.
- [7]Liu W,et al.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].J Math Biol,1986,23(2):187-204.
- [8]Tang Y,et al.Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate[J].SIAM J Appl Math,2008,69(2):621-639.
- [9]Hu Z,et al.Bifurcations of an sirs epidemic model with nonlinear incidence rate[J].Discrete Cont Dyn-B,2011,15(1):93-112.
- [10]Capasso V,et al.A generalization of the Kermack-McKendrick deterministic epidemic model[J].Math Biosci,1978,42(1-2):43-61.
- [11]Goodwin R,et al.Public perceptions and reactions to H7N9 in Mainland China[J].J Infection,2013,67:458-462.
- [12]Li J,et al.Bifurcation of an SIS model with nonlinear contact rate[J].J Math Anal Appl,2015,432:1119-1138.
- [13]Steele J H.A comparison of terrestrial and marine ecological systems.Nature,1985,313(6001):355-358.
- [14]Mao X.Stochastic differential equations and applications[M].Horwood Publishing,second edition,2007.
- [15]Liu Q,et al.Dynamics of a stochastic SIR epidemic model with saturated incidence[J].Appl Math Comput,2016,282:155-166.